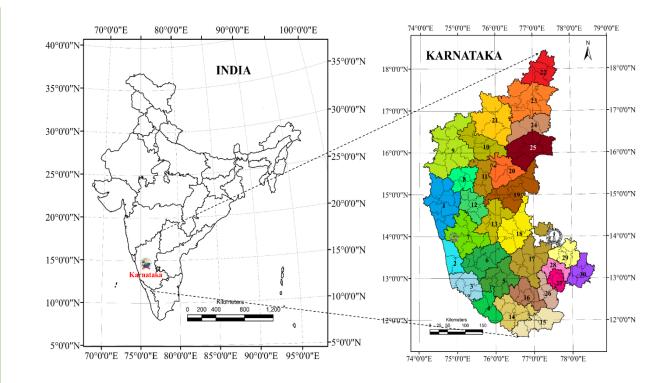
Linkages of Environmental Accounts with policies at the Sub -National level

Dr. T.V. Ramachandra

Convenor, Environmental Information System [ENVIS] Co-ordinator, Energy & Wetlands Research Group, Centre for Ecological Sciences [CES], Centre for Sustainable Technologies [CST], Centre for Infrastructure, Sustainable Transport & Urban Planning [CiSTUP] Indian Institute of Science, Bangalore 560 012, INDIA Neb: http://ces.iisc.ernet.in/energy, http://ces.iisc.ernet.in/biodiversity E Mail: tvr@iisc.ac.in; energy.ces@iisc.ac.in; envis.ces@iisc.ac.in Tel: 080-22933099/22933503/23608661

Funded by the European Union

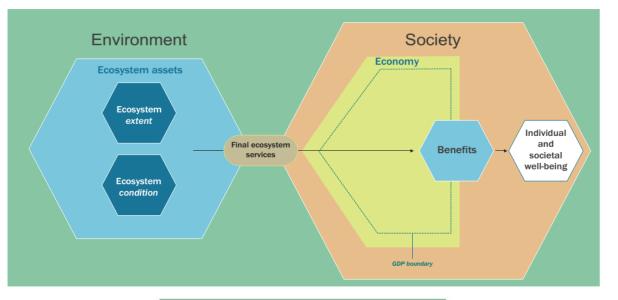

Ecosystems support human well-being through provisioning, regulating, and cultural services.

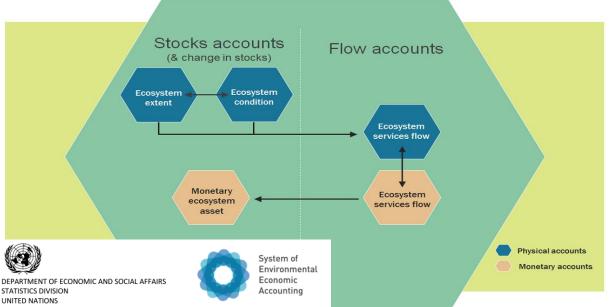
The value of all ecosystem services, including the degradation costs, needs to be understood for developing appropriate policies toward the conservation and sustainable management of ecosystems

 \rightarrow GDP to GEP

Natural Capital Accounting and Valuation of Ecosystem Services (NCAVES) – Karnataka, India

- Assessment of ecosystem extent and condition accounts for the state of Karnataka
- Valuation of the ecosystem services
- Asset accounting

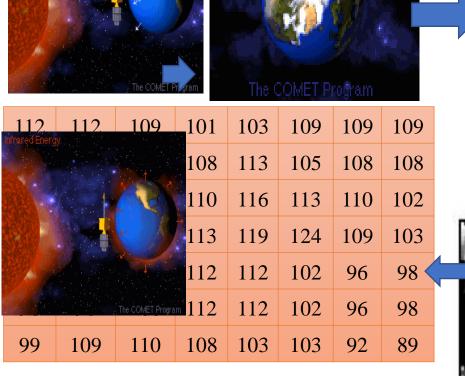

Natural Capital Accounting through SEEA Experimental Ecosystem Accounting (SEEA EEA) Protocol


Ecosystem extent accounts: record the total area of each ecosystem which is classified by type within an ecosystem accounting area and, over time in a specified area (e.g. State, District)

Ecosystem condition accounts: record the condition of ecosystem assets in terms of selected characteristics at specific points in time and, over time, record the changes to their condition.

Ecosystem goods and services accounts: record the supply of ecosystem services by ecosystem assets and the use of those services by economic units, including households. Ecosystem services accounts are presented both in physical and monetary units, using techniques for valuation of ecosystem services.

Ecosystem monetary assetaccounts: record information on
stocksstocksandchangesinstocks(additions and reductions)of ecosystem assets. This includes
accountingforecosystemdegradation and enhancement.ecosystemecosystemecosystem

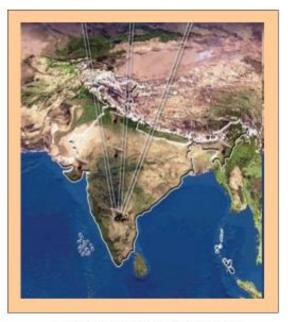


Ecosystem Extent using Big Data and Classification through ML algorithm

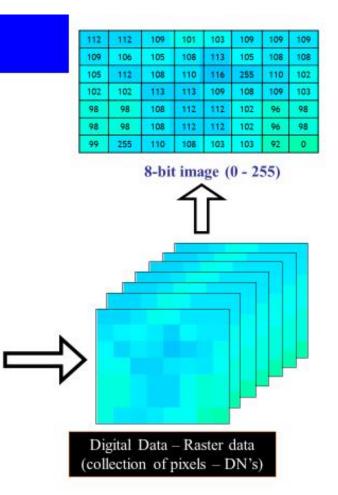
Big Data: Spatial data -Remote sensing

Big Data - RS data for Natural Capital Accounting

Time scale	Satellite / Source	Sensor	Spectral bands	Spatial resolution in metres (m)	Temporal resolution
1972 – 1999	Landsat -1, 5, and 7	MSS, TM, ETM+	PAN, VIS, NIR, MIR, TIR	15 m – 120 m (moderate spatial resolution)	16-18 days (free)
1988 – 2010	IRS-1C/1D, P6	PAN, LISS- III	PAN, VIS-2, NIR-1 (low spectral resolution)	5.8 m – 23.5 (high to moderate spatial resolution)	24 days (medium cost, moderate temporal resolution)
1999 – Till date	IKONOS	OSA	PAN, VIS-3, NIR-1	1 m (PAN) 4 m (Others) (high spatial)	1-3 days (costly)
:	:				: .
1999 – Till date	MODIS (Terra, Aqua)	VIS, NIR, MIR, TIR	36 (high spectral resolution)	250 m – 1 km (low spatial resolution)	1-2 days (free & high temporal resolution)
2002	SRTM (Shuttle Radar Topography Mission)		DEM-1	90 m	1 time (free)
2002	Radar- Hydro 1K Asia		Precipitation, Slope, Aspect-1	1 Km	1 time (free)

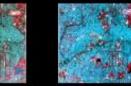

Visible Energy

7-bit image (0 - 127)


Digital Data – Raster data

Science of obtaining information about an object or phenomena without being in contact with it

Spatial Data

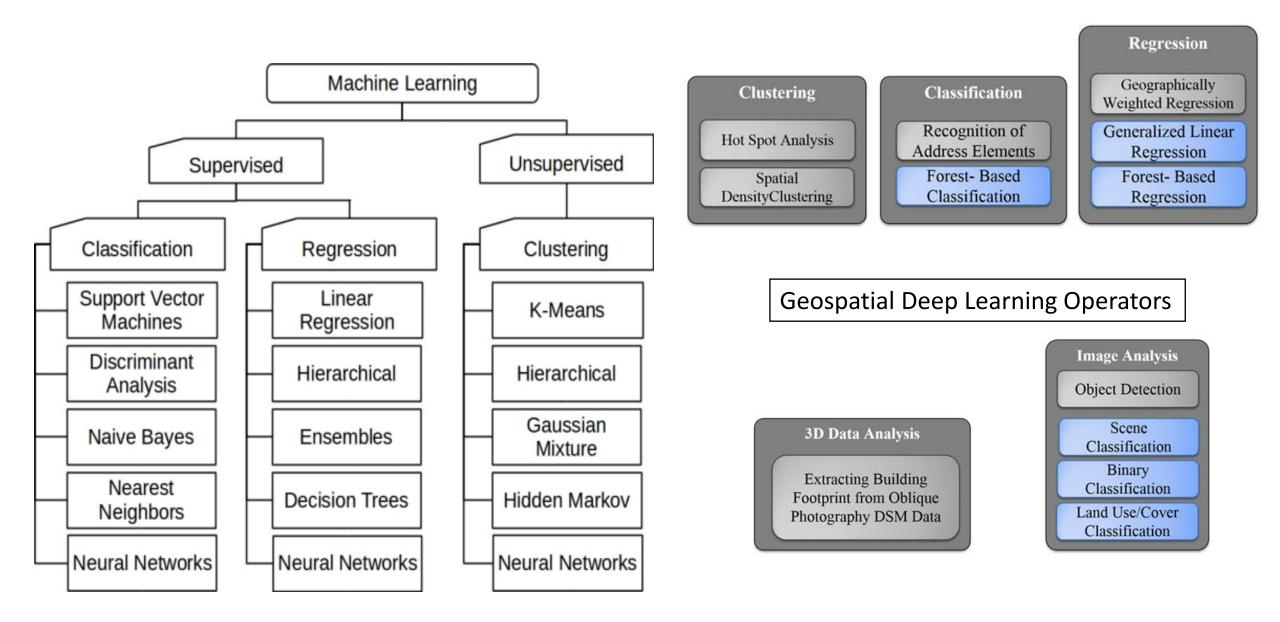

Images of Earth's Surface

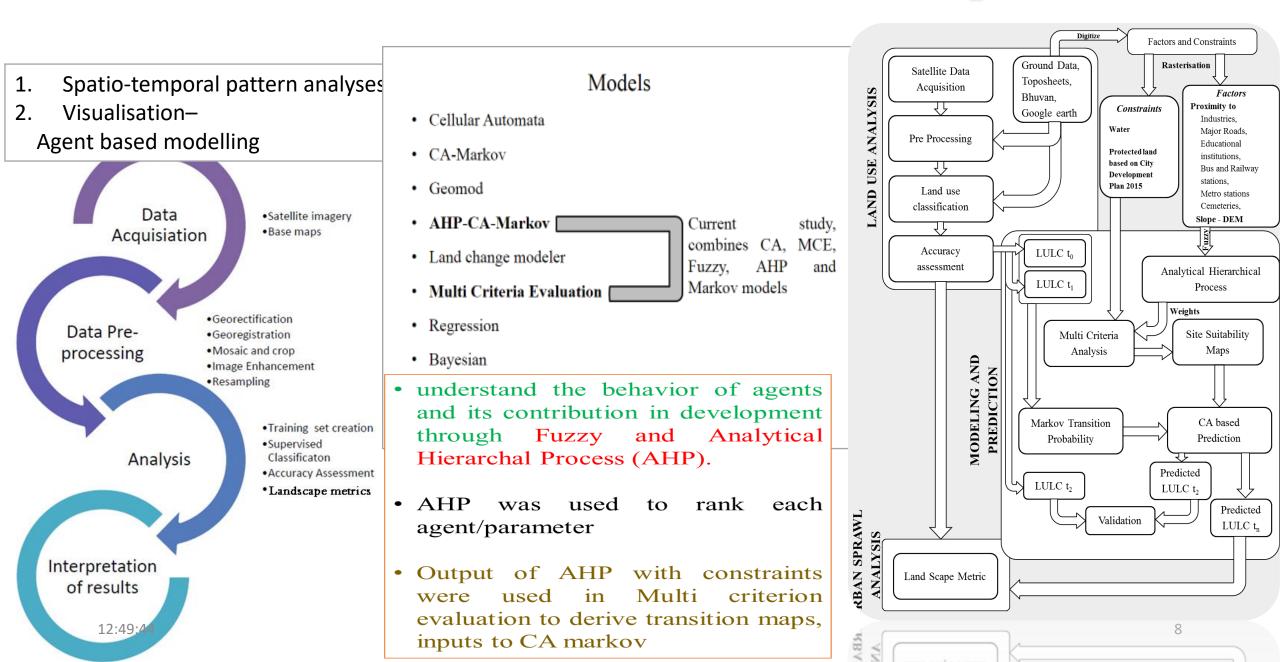
Data

- Survey of India (SOI) Topographical Sheets to generate base layers.
- RS data of various resolutions.
- Pre-calibrated handheld GPS.
- Google Earth image along with the field data for validation.

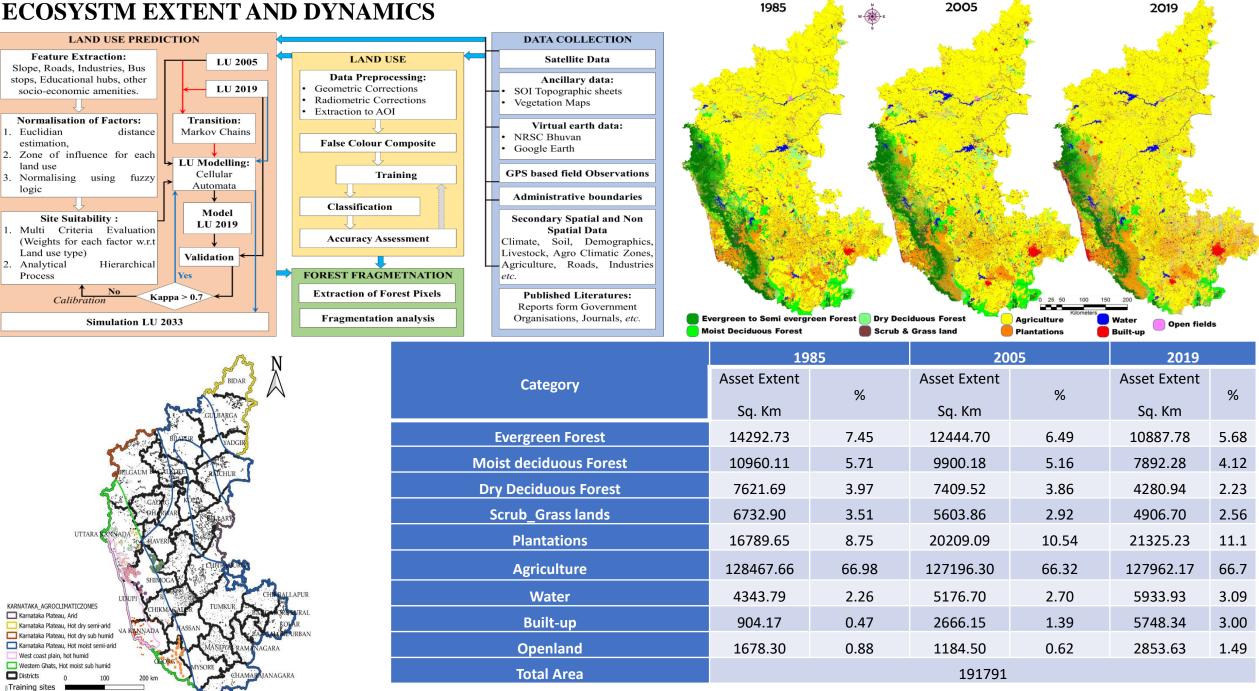
IKONOS Landsat

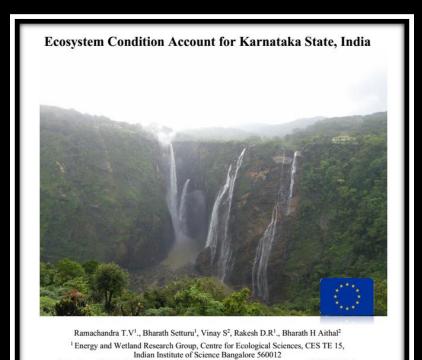
MODIS




18

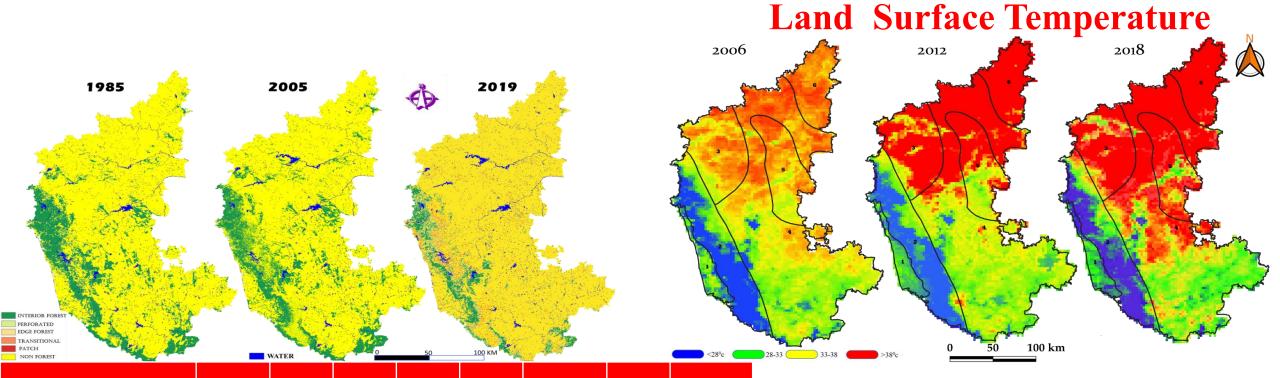
AI (ARTIFICIAL INTELLIGENCE)


Geospatial Machine Learning Operators


Geo-Visualisation of Land Cover Dynamics

ECOSYSTM EXTENT AND DYNAMICS

Task 2: Ecosystem Condition Account



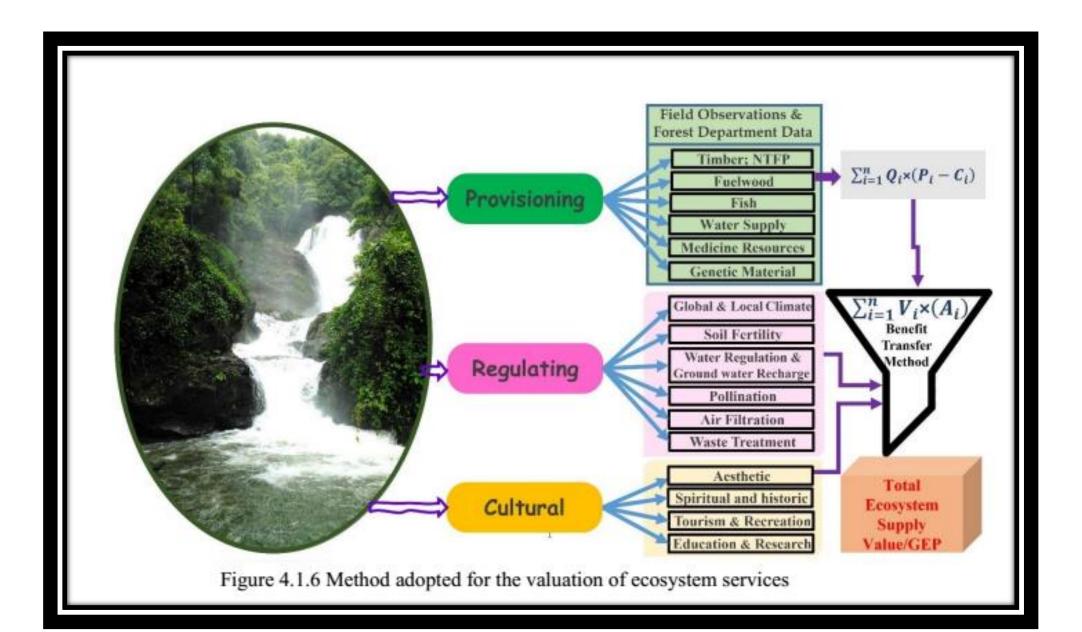
² Ranbir and Chitra Gupta School of Infrastructure Design and Management (RCG SIDM), Indian Institute of Technology Kharagpur E Mail: tvr@iisc.ac.in; energy.ces@iisc.ac.in

	The SEEA Ecosystem Condition Typology (SEEA ECT								
	ECT groups	ECT classes							
C	Abiotic ecosystem characteristics	1.Physical state characteristics (soil structure, water availability)							
condition		 Chemical state characteristics (soil nutrient levels, water quality, air pollutant concentrations) 							
Cor		3. Compositional state characteristics (including species-based indicators)							
tem	Biotic ecosystem characteristics	4. Structural state characteristics (including vegetation, biomass , food chains)							
cosyst		5. Functional state characteristics (including ecosystem processes, disturbance regimes) NPP							
	Landscape level characteristics	6. Landscape and seascape characteristics (including landscape diversity, connectivity, fragmentation , embedded semi-natural elements in farmland), Land Surface Temperature (LST)							

Ecosystem condition Accounts: Fragmentation of Forests &

Fragmentation Metrics Year Units	Interior	Patch	Transitional	Edge	Perforated	Non forests	Water	Total
1985 sq.km	31224	1247	211	3184	1189	150057	4680	191791
%	16.3	0.7	0.1	1.7	0.6	78.2	2.4	
2005 sq.km	24607	1170	2359	6655	1151	150671	5178	
%	12.8	0.6	1.2	3.5	0.6	78.6	2.7	
2019 sq.km	11335	2839	2071	7365	595	161661	5926	
%	5.9	1.5	1.1	3.8	0.3	84.3	3.1	
Changes during 1985 to 2019								
1989 sq.km	31224	1247	211	3184	1189	150057	4680	191791
2019 sq.km	11335	2839	2071	7365	595	161661	5926	191791
Net changes during 1985 to 2019								
sq.km	-19889	1592	1860	4181	-595	11603	1247	

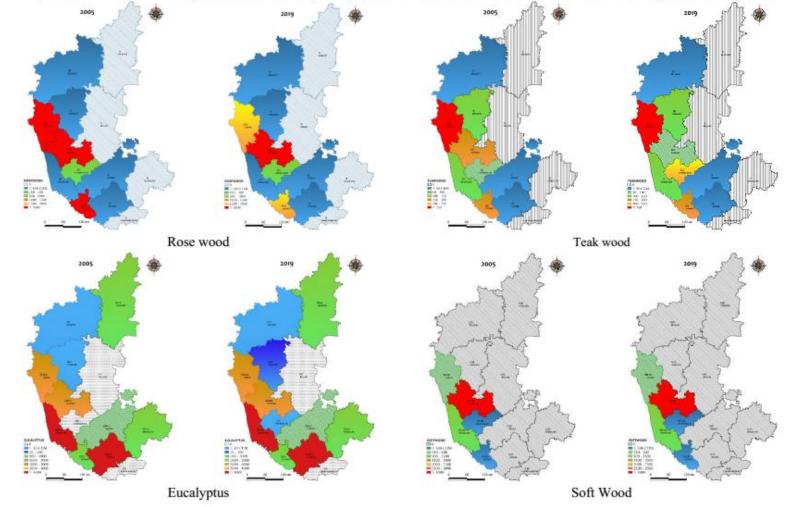
 Table 3.2.12: Ecosystem Condition Indicators based on Landscape level Characteristics considering land


 Surface Temperature in Karnataka State (district wise)

Karnataka State	(distrie	ct wise)	Scope : Landscape level						
Districts			Opening	Stock 2005		Closing Stock 2019			
			Medium					Medium	
	units	Total	High (<30 °C)	(30 -35 ⁰ C)	Low (>35 °C)	Total	High (<30 °C)	(30 -35 ⁰ C)	Low (>35 ⁰ C)
Bagalkot	На	688140	747	8870	678523	688140	0	11498	676642
	%		0.11	1.29	98.60		0.00	1.67	98.33
Bangalore- Rural	На	251101	0	3780	247321	251100	0	6596	244504
Rurui	%		0.00	1.51	98.49		0.00	2.63	97.37
Bangalore- Urban	На	226800	0	8771	218029	226800	0	25953	200847
Cibui	%		0.00	3.87	96.13		0.00	11.44	88.56
Belgaum	На	1547100	11643	68806	1466651	1547100	567	117563	1428970
Deiguum	%		0.75	4.45	94.80		0.04	7.60	92.36

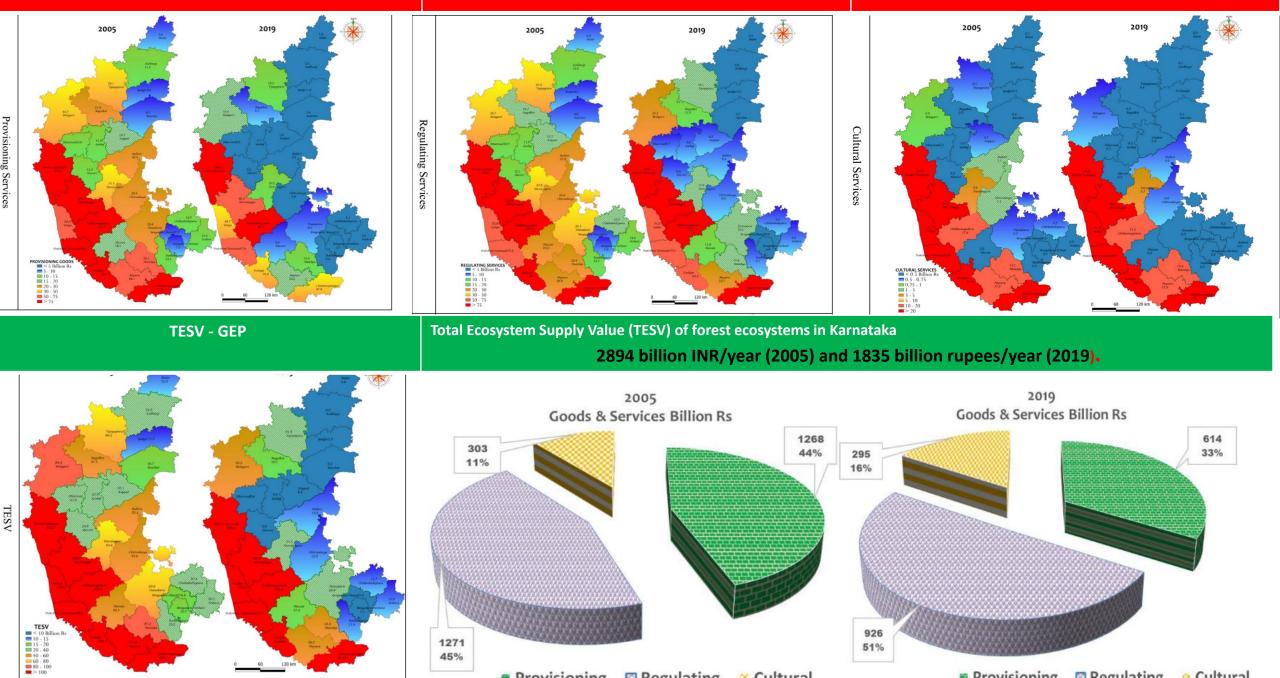
Table 3.6.1: Ecosystem Condition Index Account – Karnataka state (district wise)

Districts	SEEA -EA Conditions	Indicato r	Paramete r		Opening	g -2005 (%)	Closing -	- 2020 (%))
	Conditions			weight	High	Medium	Low	High	Medium	Low
Uttara Kannada	Abiotic ecosystem	Soil	Κ	0.017	0.0	84.4	15.6	0.0	99.3	0.7
		Soil	Ν	0.017	100.0	0.0	0.0	0.0	0.0	100.0
			Р	0.017	0.0	0.0	100.0	37.6	62.4	0.0
			OC	0.017	0.0	72.4	27.6	0.0	100.0	0.0
			S	0.017	45.4	54.6	0.0	45.4	54.6	0.0
			Zn	0.017	0.0	85.8	14.2	0.0	100.0	0.0
			Fe	0.017	0.0	100.0	0.0	0.0	100.0	0.0
			В	0.017	0.0	0.0	100.0	0.0	0.0	100.0
			Cu	0.017	0.0	99.3	0.7	0.0	99.3	0.7
			Mn	0.017	0.0	100.0	0.0	0.0	100.0	0.0
			EC	0.017	100.0	0.0	0.0	100.0	0.0	0.0
			pН	0.017	94.4	5.6	0.0	100.0	0.0	0.0
	Biotic - Compositional State	Flora		0.05	87.8	5.5	6.7	73.1	5.5	21.4
		Fauna		0.05	56.3	11.0	32.7	46.9	11.0	42.1
	Biotic - Structural State	AGB		0.05	46.2	35.2	18.6	33.1	42.1	24.8
		BGB		0.05	46.2	35.2	18.6	33.1	42.1	24.8
	Biotic - Functional State	NPP		0.10	32.4	55.2	12.4	1.4	84.8	13.8
	Landscape Level	Fragmenta	ation	0.25	55.0	10.8	34.2	45.8	13.5	40.8
		LST		0.25	20.6	53.2	26.2	0.6	69.9	29.6
Ecosystem conditi	on Account		Index	1.00	39.6	35.9	24.5	25.8	46.3	28.0


Note: N: Nitrogen, P: Phosphorous, K: Potash, OC: Organic Carbon, Zn: Zinc, Fe: Iron, B: Boron, Cu: Copper, Mn: Manganese, S: Sulphur, EC: Electrical conductivity, AGB: Above ground biomass, BGB: Below ground Biomass, NPP: Net Primary Productivity, LST: Land Surface Temperature

Ecosystem services supply accounts (physical units) & Valuation of the ecosystem services

Figure 5.3.1 Timber, Bamboo, and canes extracted (in the physical units) across forest circles in Karnataka for the years 2005 and 2019


Services

Regulating Services

45%

Provisioning

Cultural Services

Regulating

Cultural

igure 5.3.32. District-wise TESV (Total Ecosystem Supply Value) of forest ecosystem in Karnataka,

Cultural

Ecosystems	Year	Units	Provisioning	Regulating	Cultural	TESV
Forests	2005	Million ₹	12,67,528	12,70,583	3,03,034	28,41,145
		%	44.6	44.7	10.7	100
Agriculture		Million ₹	4,11,834	3,44,933	21,819	778,586
(croplands and horticulture)		%	52.9	44.3	2.8	100
Total		Million ₹	16,79,361	16,15,516	3,24,854	36,19,731
		%	46.4	44.6	9.0	100
Forests	2019	Million ₹	6,13,883	9,26,346	2,94,955	18,35,184
		%	33.5	50.5	16.1	100
Agriculture		Million ₹	5,89,283	4,59,037	29,305	10,77,625
		%	61.2	36.3	2.5	100
Total		Million ₹	12,03,166	13,85,383	3,24,260	29,12,809
		%	41.3	47.6	11.1	100

Ecosystem	Rs/Ha/yr								
	Provisioning	Regulating	Cultural	TESV					
Forest	219494.8	331216.4	105461.6	656172.8					
Agriculture	39473.2	30748.6	1963.0	72184.8					
Terrestrial	258967.9	361965.0	107424.6	728357.6					

NPV - Monetary asset account (2005-2019)

	Units	Forest	Agriculture	Total
		ecosystem	ecosystem	NPV
Opening stock – 2005 (at 2019 values)	Billion ₹	73,099	20,031	93,130
Changes (absolute)	Billion ₹	-25,885	7,693	-18,192
Changes	%	-35.4	38.4	-19.5
Provisioning	%	-51.6	43.1	-28.4
Regulating	%	-27.1	33.1	-14.2
Cultural	%	-2.7	34.3	-0.2
Closing stock - 2019	Billion ₹	47,214	27,724	74,938

(i) Business as usual scenario (BAU)	BAU assumes the current development will continue and evaluates the various agents responsible for the change and forecast what would be the future landscape status
(ii) Agent based land use transition scenario (ALT)	Policy Context Various driver's (agents) such as proposed (new) developments by the government, existing and proposed (i) industries, (ii) liner projects, (iii) urbanization, (iv) slope, (v) core built-up areas, (vi) special economic zones (SEZ) etc., responsible for the land use changes in the neighborhood.
(iii)ReserveForestProtection(RFP)andstringentconservationofnationalparksandsanctuariesscenario	Spatial extent of reserve forests, national parks, sanctuaries are maintained with strict regulations. Absence of abrupt land use change.
(iv) Afforestation (High conservation) scenario (AF)	Considering afforestation initiatives, agents are - same as (ii); Spatial extent of afforestation data (during the past decade) and proposed afforestation
(v) SDP-Sustainable Development Policy Scenario	Sustainable development policy scenario ensures (i) the protection of reserve forests and (ii) afforestation and hence includes the constraints same as scenario 3 & 4 and allows the growth in regions other than forest area.

Ramachandra T.V¹., Bharath Setturu¹, Vinay S², Chandan M.C² and Bharath H Aithal² ¹Energy and Wetland Research Group, Centre for Ecological Sciences, CES TE 15, Indian Institute of Science, Bangalore 560012 ²Ranbir and Chitra Gupta School of Infrastructure Design and Management (RCG SIDM), Indian Institute of Technology Kharagpur E-Mail: tvr@iisc.ac.in; energy.ces@iisc.ac.in; envis.ces@iisc.ac.in

Modeling Landscape Dynamics: Scenario based Analysis through AI

Modeling of landscape dynamics Hybrid Fuzzzy Analytical Hierarchy Process (AHP) based Spatial Markov chains (MC) Cellular automata (CA) (Fuzzy AHP-MCA) technique

using temporal data.

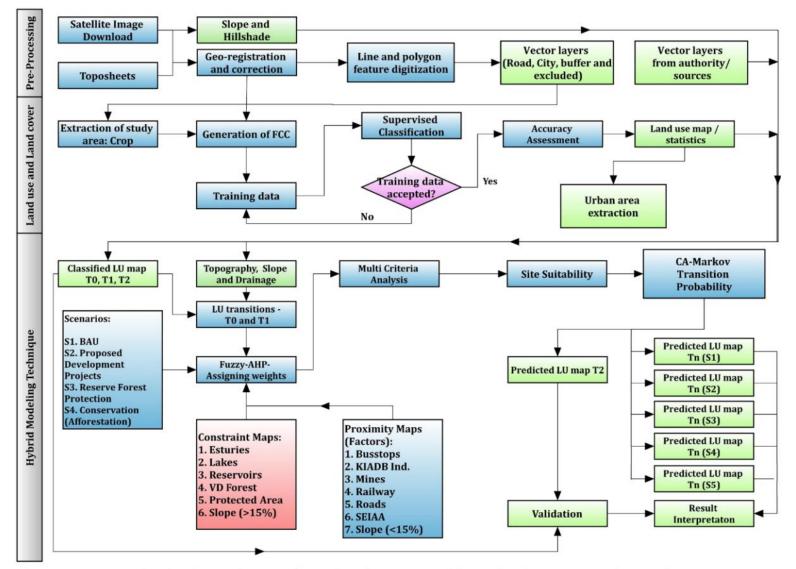
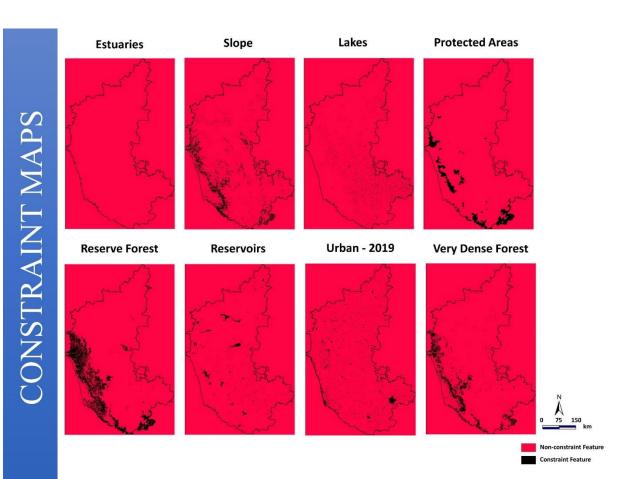
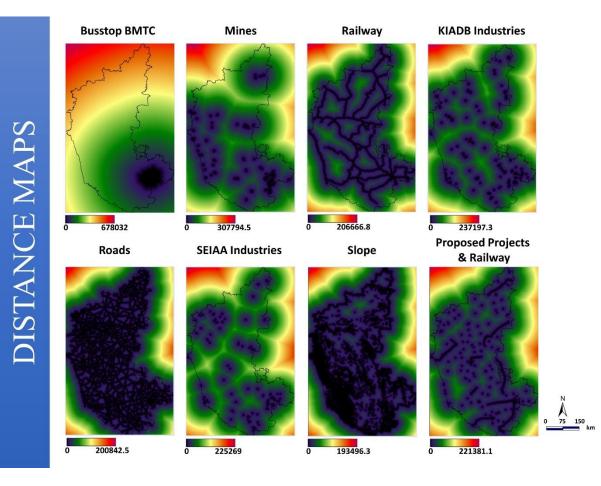
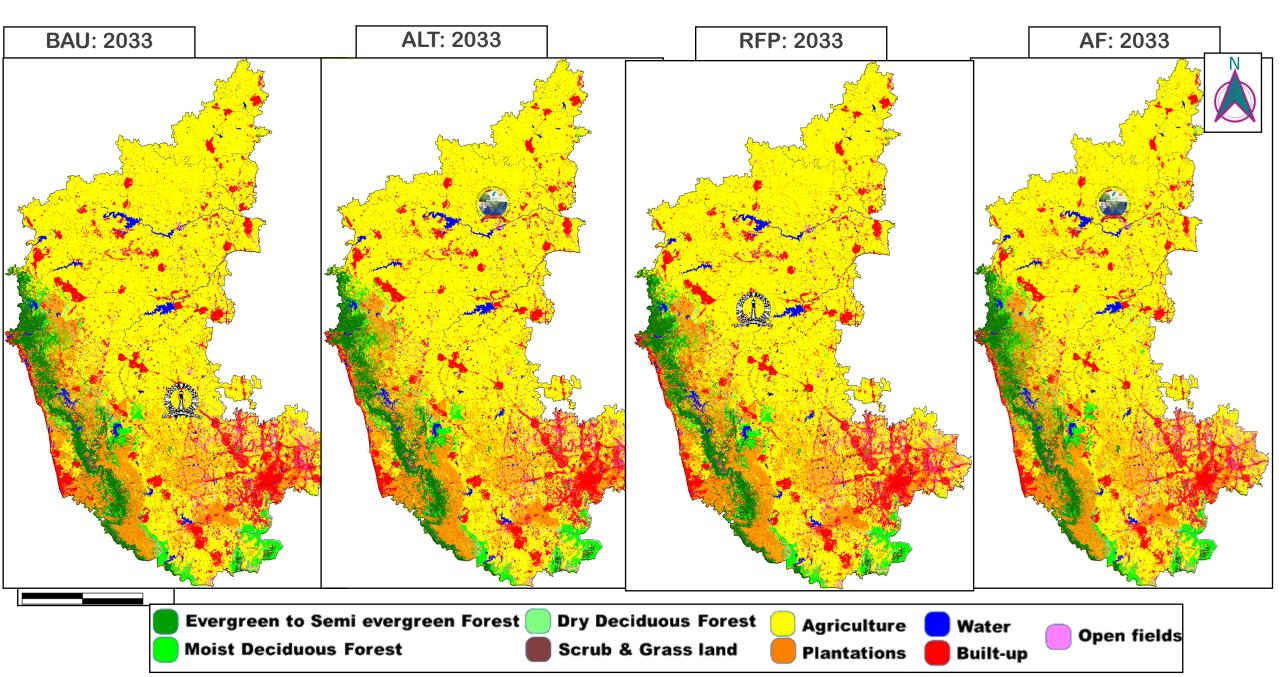
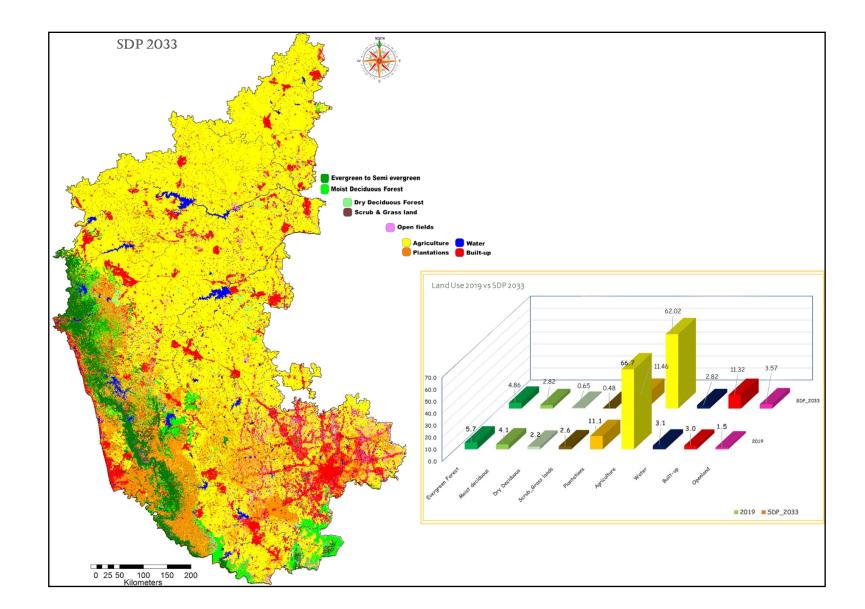




Figure 4.5: Method adopted to analyze land use transitions in the Karnataka region

Model Constraints:

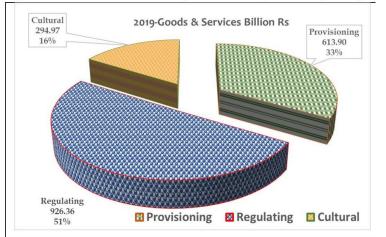


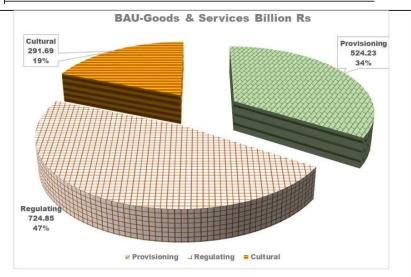

 Agents
 Industries, proximities to roads, railway stations, metro stations, educational institutes, religious places, service infrastructure such as police stations, hotels, hostels etc.

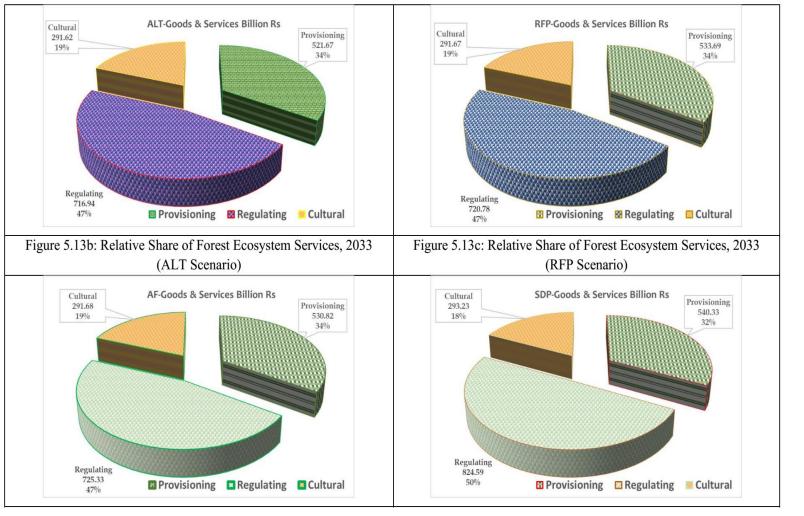
 Constraints
 Drainage network, slope, water bodies, Reserved regions for non-development, Protected areas, catchment areas, etc.

 21

Scenarios: BAU, ALT, RFP, AF




Scenarios: BAU, RFP, ALT, AF, SDP


Land use categories	BAU_2033 ALT_2033		RFP_2033		AF_2033		SDP_2033			
	На	%	На	%	На	%	На	%	На	%
Built-up	22,01,515	11.48	28,10,015	14.65	21,70,349	11.32	21,46,203	11.19	20,71,994	10.76
Agriculture	1,17,64,649	61.34	113,30,926	59.08	1,18,94,624	62.02	1,18,58,568	61.83	1,16,67,178	60.88
Plantation	21,77,670	11.35	20,66,713	10.78	21,98,428	11.46	21,69,239	11.31	21,52,053	11.23
Open fields	6,68,824	3.49	6,68,824	3.49	6,85,063	3.57	6,68,824	3.49	6,85,063	3.57
Evergreen Forest	9,20,948	4.80	9,15,179	4.77	9,32,811	4.86	9,59,097	5.00	9,72,489	5.07
Moist Deciduous Forest	5,77,449	3.01	5,72,085	2.98	5,41,381	2.82	5,75,213	3.00	6,66,957	3.48
Dry Deciduous	1,52,389	0.79	1,51,217	0.79	1,24,597	0.65	1,56,922	0.82	2,36,863	1.24
Scrub_Grass	1,15,952	0.60	1,14,432	0.60	91,496	0.48	97,938	0.51	1,96,677	1.01
Water	5,99,704	3.13	5,49,709	2.87	5,40,351	2.82	5,47,096	2.85	5,29,826	2.76
Total					1,91,79,10	0				

Ecosystem: Forests (in Billion Rupees) Policy Scenarios								
Services Type2019BAUALTRFPAFSDP								
Provisioning Goods	613.90	524.23	521.67	533.69	530.82	540.33		
Regulating Services	926.36	724.85	716.94	720.78	725.33	824.59		
Cultural Services	294.97	291.69	291.62	291.67	291.68	293.23		
Total	1835.23	1540.77	1530.23	1546.14	1547.83	1658.15		

Figure 3.14. Relative share of ecosystem services (forest ecosystems), K

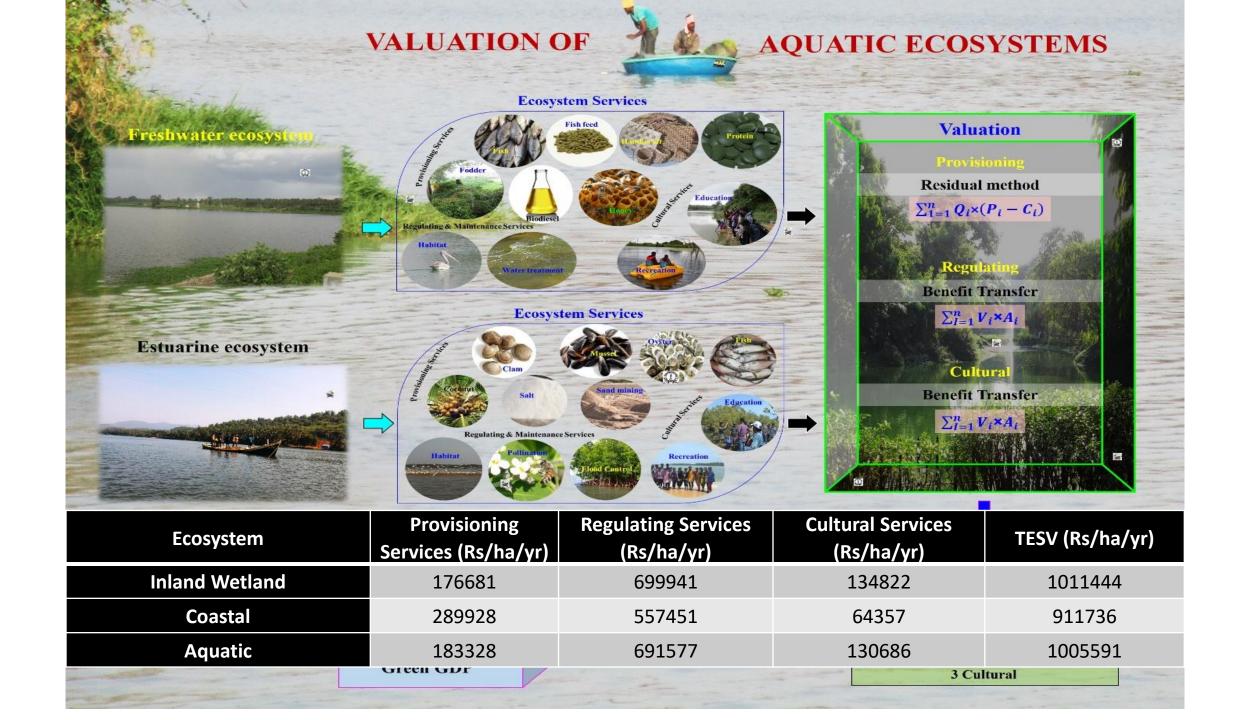
Wetlands – goods and services

UNPOLLUTED

- Rachenahalli Lake– Rs 10500/day/hectare
 - (fish, fodder, agriculture in command area, flood mitigation, GW recharge, recreation,...)

POLLUTED

 Amruthhalli Lake: Rs 20/day/hectare (Most waterbodies are Sewage fed)


Wetlands - Services

Wetland Ecosystem Functions • Production • Habitat • Information • Regulation		Decision making process: policies, conservation, and management of wetland	Wet	land Ecosystem Serv	Ces
Ecosystem Services Provisioning Services 	Human Benefits		 Provisioning services Food (crops, fodder, fisheries, honey, etc.), Freshwater, Fiber (timber, cotton, silk, etc.), Fuel, Genetic resources, Biochemicals/pharmaceuticals/ natural medicines, and Ornamental resources. 	Regulating and maintenance services • Air quality regulation, • Climate regulation, • Water regulation, • Water purification, • Waste treatment, • Disease regulation, • Natural pest control, • Pollination, • Erosion control,	Cultural services Aesthetic values, Recreation/tourism, Spiritual/religious values, Educational/scientific values, and Cultural heritage values.
 Regulating Services Cultural Services 	 Social – cultural values Ecological values Economical values 	Total Ecosystem Supply Value	Total Ecosystem Supply Value (TESV)	and ecosystem se mainter	oning services llating and lance services ral services

A.

Total ecosystem value of Karnataka wetlands

Services	Details	
	Wetland: Total area (ha) based on grid	281299.5
Provisioning Service	Total Rs/yr (in Billion Rupees)	49.70
	Production Rs/ha/yr (in Lakhs)	1.8
	% distribution	18
Regulating and Maintenance Service	Total Rs/yr (in Billion Rupees)	196.89
	Production Rs/ha/yr (in Lakhs)	7
	% distribution	69
Cultural Service	Total Rs/yr (in Billion Rupees)	37.93
	Production Rs/ha/yr (in Lakhs)	1.3
	% distribution	13
TESV	Total Rs/yr (in Billion Rupees)	284.52
	Production Rs/ha/yr (in Lakhs)	10.1
NPV	NPV in Billion Rupees	7320.6

- The work is part of the international EU-funded, Natural Capital Accounting and Valuation of Ecosystem Services (NCAVES) project
- The NCAVES project is being carried out as a collaboration between United Nations environment programme (UNEP), United Nations Statistics Division (UNSD), the Ministry of Statistics and Programme Implementation (MoSP), Government of India and The ENVIS division, The Ministry of Environment Forests and Climate Change (MoEFCC), Government of India.

http://wgbis.ces.iisc.ernet.in/energy

tvr@iisc.ac.in, envis.ces@iisc.ac.in